
AIAA-2010-0351
49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition.

Numerical Study of Detonation–Turbulence Interaction

L. Massa, M. Chauhan and F.K. Lu,

Mechanical and Aerospace Engineering Department,

University of Texas at Arlington.

A numerical study is performed to investigate the effect of preshock turbulence on the

detonation wave properties. The analysis is based on the integration of the chemically

reactive Navier–Stokes equations using a Runge–Kutta scheme and a fifth-order WENO

spatial discretization. The results show a marked influence of preshock perturbations on

the postshock statistics. The alteration to the limit cycle structure supported by unstable

waves close to their critical points is highlighted. The effect of reactivity and fluid accel-

eration in the postshock region are examined by comparison with the non-reactive analog.

The possibility that significant forcing can lead to hot spot formation is investigated by con-

sidering temperature probability distribution functions in the reaction zone. The separate

effect of vortical and entropic fluctuations is considered.

I. Introduction

Many combustion processes are affected by the interaction between turbulence and heat release. In
particular, detonation structures interact with a turbulized preshock field both during the initiation1 and
the propagation phases.2 Possible sources of turbulence ahead of a detonation wave are: turbulent boundary
layers resulting from gas dilatation in closed tubes (see Law3 p. 686), ridges in obstacle laden pipes,4

shock-flame interactions,5 and previous (detonation) waves in continuous spin detonation engines.6

The detonation–turbulence interaction problem in the present context is concerned with the unsteady
coupling between convected vortical/entropic structures and a detonation wave. Acoustic preshock fluctua-
tions, although important to detonation initiation in obstacle-laden pipes (Law3 p. 686), are not considered
in the present study. The dynamics of the interaction reveals the role of preshock fluctuations on the
postshock field.

The non-reactive gas analog, shock–turbulence interaction, has been the subject of several theoretical,7, 8

numerical9–12 and experimental13, 14 investigations. A large portion of past numerical works was concerned
with comparing inviscid linear interaction analysis (LIA) with non-linear Navier-Stokes computations. Lee
et al.9 analyzed the non-reactive coupling and found that non-linear computations agree well with Ribner’s7

LIA. While the linear analysis provides useful estimates of the amplification of vorticity fluctuations across the
shock, it misses the strong nonlinear dynamics of the energized and highly anisotropic vorticity downstream
of the front.

Numerical simulation results presented by Rawat and Zhong12 indicated that transverse vorticity fluc-
tuations are significantly enhanced across the shock and amplifications increased with the increasing Mach
number. Taylor microscales were seen to be reduced just behind the shock after which streamwise microscales
rapidly evolve. For turbulent Mach numbers approximately equal to 0.1 the non-linear amplification factor
for transverse microscales agrees well with the LIA results.

The detonation–turbulence interaction process differs from the non-reactive shock–turbulence analog be-
cause of three reasons: exothermicity, the presence of a length scale associated with the detonation structure,
and the presence of natural (intrinsic) fluctuations of the unstable detonation front. Jackson et al.17 con-
ducted a linear interaction analysis of the reactive problem assuming that the reaction zone thickness is much
smaller than the turbulence length scale. They, therefore, neglected both the effect of detonation structure
and of intrinsic scales. They concluded that exothermicity affects the interaction of convected isotropic weak
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turbulence by amplifying the rms fluctuations downstream of the detonation. The effect of exothermicity is
linked to the Mach number, specifically the greatest changes occur around the Chapman-Jouguet condition.

Massa and Lu18 extended Jackson’s analysis by including the effect of the length scale associated with
the heat release. They found a strong dependency of the transfer functions on the perturbation wave number
through the ratio between fluctuation wavelength and half reaction distance. This phenomenon is absent
in shock–turbulence LIA. They showed the existence of resonant wavelengths at which preshock Fourier
components are maximally amplified, leading to local maxima in postshock energy spectra. They related
the resonant wavelengths with neutral stability conditions (critical points) for the normal mode eigenvalue
problem of Short and Stewart.19 For linearly unstable waves, resonant wave numbers are loci of infinite
amplification of postshock power-spectra. Therefore, linear analysis provides useful insights but fails to
correctly represent the system dynamics near natural frequencies.

Near the critical point of instability a viscous unstable detonation undergoes Hopf bifurcations to a limit
cycle solution. A theoretical proof of the existence of closed orbits for one-dimensional, strong, viscous, det-
onations was recently devised by Texier and Zumbrun.20 In a multi-dimensional study, Dou et al.21 studied
the influence of transverse waves on the heat release zone and on the pattern of quasi-steady detonation
fronts. They determined that the triple points generated by the motion of transverse waves causes the deto-
nation front to become locally over-driven and form “hot spots” where chemical reaction is enhanced by the
coupling of high pressure and high velocity flow. Austin22 linked the disruption of the regular, periodic, limit
cycle structure, and the formation of hot spots in unstable detonations to the mixture effective activation
energy.

The present work studies the effect of preshock turbulence on the limit cycle fluctuations. Noise can have a
range of effects on an unstable dynamical system, which include stabilization,23 transition,24 and resonance.25

The dynamics of small fluid-mechanics scales is essential to resolving the thermo-fluid interaction in the
induction region of a detonation. Both vortical and entropic fluctuations in the preshock field are considered
in what is referred to as a forced detonation.

The paper is essentially divided in two parts. The first details the linear interaction analysis (LIA) the
second the non-linear forced response.

II. Linearized Perturbation Equations

The linear perturbation equations in the postshock region are obtained from the compressible Euler
reactive equations by ignoring second-order contributions and setting the time derivative operator,

∂

∂t
= V

∂

∂y
,

where V = u0 tan θ0 is the velocity of the steady inertial reference frame defined by Ribner.16 The pertur-
bation equations are written with respect to a reference system lying on a plane perpendicular to the shock
plane and containing the wave number vector ~k. In this system, x (without subscript) is the direction normal
to the shock and y is the direction parallel to it. The component of the wave number vector on the y axis
is ky = k |cos (θ0)|. The postshock turbulence components are thus determined in the cylindrical reference
system (x, y, φ) with associated wave number components (k1, ky, 0). The transverse wave number ky

is unchanged across the shock, while the longitudinal is different from the preshock analog. In the steady
reference frame attached to the shock wave, the postshock mean solution features the two flow angles,

θ1 ≡ tan−1

[

tan θ0
M2

1 (γ − 1) + 2

(γ + 1)M2
1

]

,

immediately after the shock, and

θ∞ ≡ tan−1





tan θ0

(

2 + (γ − 1)M2
1

)

1 + γM2
1 −

√

(1 − M2
1 )

2 − 2Qc2
0/γ (γ2 − 1)M2

1



,
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in the farfield. Here, M1 is the Mach number immediately after the shock, which is a function of the preshock
Mach number M0 only, or, by means of a more complex expression, of the detonation structure parameters,

M2
1 =

f(γ − 1)
(

γQ − Q/γ +
√

(γ2 − 1)Q (2γ + (γ2 − 1)Q)/γ + 1
)

+ 2

−γ + 2f
(

γ
(

γQ +
√

(γ2 − 1)Q (2γ + (γ2 − 1)Q)/γ + 1
)

− Q
)

+ 1
. (1)

The solution array is composed by the complex transfer functions,

z ≡ [Xρ, Xu, Xv, Xp, Xλ]
T
,

plus the ratio between the shock front angle and the longitudinal velocity component of the preshock shear
wave σ. Denoting by Z the mean-flow solutions,

Z ≡ [ρ, u, v, p, λ]
T
,

and changing to a shock-fitting coordinate system,

x → x − Ψ (y, t) ,
∂Ψ

∂y
= tanσ,

we obtain the following vector equation,

A
∂z

∂x
+ (B + V D)

∂z

∂y
+ Cz − (B + V D)

∂Z

∂x
σ = 0. (2)

The 5 × 5 matrices denoted with bold typeface are

A ≡

















u ρ 0 0 0

0 u 0 1
γρ 0

0 0 u 0 0

0 T − u2 0 0 0

0 0 0 0 u

















, B ≡

















0 0 ρ 0 0

0 0 0 0 0

0 0 0 1
γρ 0

0 0 T 0 0

0 0 0 0 0

















, (3)

C ≡

















∂u
∂x

∂ρ
∂x 0 0 0

− ∂p
∂x/

(

ρ2γ
)

u 0 0 0

0 0 0 0 0

ζrρ − T
ρ

∂u
∂x −2u∂u

∂x 0 ζrp + ∂u
∂x/ρ ζrλ

−rρ
∂λ
∂x 0 −rp −rλ

















, D ≡

















1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 −u 0 1
ργ 0

0 0 0 0 1

















. (4)

where ζ = −Qc2
0 (γ − 1) /γ and the derivatives of the rate term with respect to density, pressure, and progress

variable are:

rρ = −rE
c2
0

p
, rp = rE

ρc2
0

p2
, rλ = −K exp

(

−E
ρc2

0

p

)

. (5)

The solution of equation (2) is converted from shock-fitted back to Cartesian coordinates using

z → z − ZxΨ (y, t) .

The evaluation of the auto-correlation in the wave number space, equation (12), and the linearity of the
problem allow us to analyze each Fourier component individually, so that the substitution ∂z/∂y → ikyz
yields a system of ordinary differential equations in x. The linear system requires six boundary conditions,
five are imposed at the shock front, and one at the farfield, x → ∞. The shock boundary conditions are
obtained by linearization of the Rankine-Hugoniot shock relations. They are written in vector form as

z (γ + 1) = Sa

cos θ1/ cos θ0
√

4 cos2 θ1 (1 − M2
1 ) (γM2

1 + 1) + M4
1 (γ + 1)2

+ Sb

tan θ1

M2
1 (γ − 1) + 2

σ, (6)
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where the 5 × 1 arrays on the right-hand side are defined below,

Sa ≡















4/M1 (1 − γ) + 8γM1
(

M2
1

(

γ2 − 6γ + 1
)

+ 4 (γ − 1)
)

sec θ1

4
(

1 + γ
(

2M2
1 − 1

))

tan θ1

4γM1

(

M2
1 (γ − 1) + 2

)

0















, (7a)

Sb ≡















−4
(

1 + γ
(

2M2
1 − 1

))

2M1 sec θ1

(

M2
1 (3γ − 1) + 3 − γ

)

4/M1

(

(1 − 2γ)M4
1 + (γ − 3)M2

1 +
(

γM4
1 + 1

)

cos(2θ1) + 1
)

csc(2θ1)

−4γM2
1

(

M2
1 (γ − 1) + 2

)

0















. (7b)

The farfield condition is obtained by imposing no left-running characteristics, practically nullifying the
upstream traveling acoustic wave. This condition is similar to that proposed by Short and Stewart,19 but
here we include the dependence of the solution on λ. This modified approach reduces the extension of the
computational domain in x, and facilitates the task of integrating equation (2) for large wave numbers ky.
In order to do so, we replace in equation (2)

∂z

∂x
→ αz,

∂z

∂y
→ ikyz,

and solve for the α (generalized) eigenvalues and the associated right eigenvectors matrix, R. The final
condition is obtained by substituting in the eigenvectors matrix the column corresponding to the upstream
acoustic with the solution vector −z and imposing that the determinant of such matrix is equal to zero. In
a vector form, we write Sc

T z = 0, where

Sc ≡















0

Sd2Se5

Sd3Se5

Sd4Se5

Sd
T
Se















, Sd ≡















0

V

−u

i/(ργ)
√

1 − M2
w

0















,

Se ≡















0

rλu (−irλ − kyV ) ζ

kyrλu2ζ

iζr2
λu2ργ

iT
((

u2 + V 2
)

k2
y + 2irλV ky + r2

λ

(

M2
∞

− 1
))















,

(8)

and Mw ≡
√

(u2
∞

+ V 2) /T∞ and M∞ ≡
√

u2
∞

/T∞ = Mw cos θ∞ are the farfield (burnt gas side) Mach
numbers in the steady and shock reference frames, respectively. Note: all the flow variables in equation (8)
are evaluated in the farfield and the superscript ∞ is dropped for brevity of notation.

II.A. Preshock Turbulence

The preshock turbulence field is assumed to be isotropic, frozen and divergence-free so that the velocity field
is obtained as the superimposition of planar vorticity (shear) waves as described in more detail by Ribner.7

The von Kármán spectral model is used to determine the ratio of the longitudinal velocity spectral density
to its mean square value. The von Kármán spectral energy E (k) decays ∝ k−5/3 for k → ∞, it ignores
the dissipation subrange, and is, therefore, an accurate model for high Reynolds number turbulence.26 For
this reason, the von Kármán model is commonly used in shock–turbulence inviscid LIA.7, 9 In spherical
coordinates (k, θ0, φ),

[uu]0

u2
0

=
B̂k̂2 cos2 θ0

2π
(

1 + k̂2
)17/6

; (9)
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where,

k̂ = kâL∗, B̂ =
55

18πâ
, â =

55

27π
B (1/3, 5/2) , (10)

and B denotes the Beta function.

II.B. Postshock Turbulence

The amplification of a wave pattern as it goes through the detonation is estimated in terms of auto-
correlations. We seek to determine postshock turbulence auto-correlations by integrating the “transferred”
wave amplitudes over the preshock wave number space. The evaluation of the transfer functions will be
shown in detail in §II. The postshock turbulence is homogeneous on planes parallel to the unperturbed
shock front (orthogonal to x1) and in time. A scalar field α (~x, t) is expanded over the (x2, x3, t) space in
Fourier-Stieltjes series in the general form

α (~x, t) =

∫

ei[k2,k3,kt]
T [x2,x3,t] dZα (k2, k3, kt; x1), (11)

where k2 and k3 are the wave number vector projections onto the respective Cartesian axes, and kt = k1Ds,
where Ds is the detonation Mach number based on the postshock speed of sound. Considerations about
the homogeneity of the scalar field (see, for example, Moyal27) lead to expressing the auto-correlation as an
integral over the wave number space,

α2 (x1) =

∫∫∫

[αα] (k2, k3, kt; x1) dk̂2 dk̂3 dk̂t; (12)

where [αα] is the spectral density over
(

k̂2, k̂3, k̂t

)

. The transfer function Xα is defined such that

[αα] dk̂2 dk̂3 dk̂t = |Xα|2 [uu]0 dk̂1 dk̂2 dk̂3, (13)

so that integration is performed over the preshock wave number field. Integration over k̂2 and k̂3 defines the
one-dimensional power spectrum,

Φα

(

k̂1

)

=

∫∫

|Xα|2
[uu]0

u2
0

dk̂2 dk̂3. (14)

Substitution of equation (9) in equation (14) and conversion from Cartesian to spherical coordinates7 lead
to

Φα =
B̃

∣

∣

∣
k̂1

∣

∣

∣

5/3

∫

|Xα|2
cos3 θ0

sin5 θ0

(

k̂−2
1 + sin−2 θ0

)17/6
dθ0. (15)

Note that the power spectra are integrated in k̂1 ∈ [−∞,∞], the longitudinal wave number in the preshock
field.

The transfer function depends on the wave number ~k. This is different from the two limiting cases of
Jackson et al.28 and Ribner7 where it was a function of the angle θ0 only. The dependence of the transfer
function on k highlights the importance of the turbulence scaling effects, here represented by the variable
L∗, which were ignored in previous discussions. It will be shown that the eigenvalues of the linear interaction
homogeneous problem play a significant role on the dependency of the transfer functions on the wave number.

III. LIA Results

III.A. Activation Energy Effect on Variances and Microscales

For L∗ → ∞ the activation energy does not affect the transfer functions (i.e. Jackson et al.’s theory28). In
this section we seek to identify the effect of E on the turbulence amplification for finite wave thicknesses, and
link it to changes in characteristic solutions of the homogeneous problem described in ref.18 Referring to the
stability analysis,19 we start with a stable detonation structure close to the instability boundary by setting
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Q = 2, E = 10, γ = 1.2, f = 1.2, and L∗ = 1. The free-stream Mach number M0 = 1.9439 is independent
of the activation energy, and will be used for comparison with the non-reactive interaction.

It was shown in ref.18that the activation energy plays a significant role on the energy spectra of finite
thickness, weakly stable detonations by moving poles of the associated homogeneous problem with respect
to the real axis. The emphasis of the present analysis is on the effect of the detonation structure on first
order statistics, i.e. autocorrelations and length scales.

Longitudinal compression of fluid particles as they pass through the shock leads to a postshock turbulence
with axial symmetry, and decreases both the longitudinal velocity variance u2 and the longitudinal Taylor’s
microscale,9

λ1 ≡

√

√

√

√

u2

(

∂u
∂x

)2
.

Both quantities recover immediately after the shock as a result of the decay of the acoustic subcritical
contributions to the velocity field. The non-linear analysis of Massa et al.29 determined that the u2 recovery
is significantly reduced in reactive conditions, while λ1 increases faster than in the non-reactive case.

The longitudinal Taylor’s microscale is infinite in the von Kármán model because

lim
k1→∞

Φux,0 (k1) = lim
k1→∞

36k2
1Γ
(

17
6

)

55
√

π (k2
1 + 1)

5/6
Γ
(

1
3

)

(ãL∗)
2
6= 0, (16)

where Γ is the gamma function, and the factor (ãL∗)2 is present in the denominator of equation (16) because
L1/2 is the length scale. Nonetheless, the ratio between preshock and postshock Taylor’s microscale is finite,
and by using the l’Hôpital’s rule

λ1 =

√

u2

u2
0

lim
k1→∞

Φux,0 (k1)

Φux (k1)
, (17)

where Φux is determined from equation (15) with Xux = ∂Xu/∂x. The ratio under limit in equation (17)
asymptotes to a constant value for k1 → ∞ and is evaluated at k1 = 30; differences between the values at
k1 = 30 and k1 = 40 were found to be negligible.

The longitudinal velocity variance and Taylor’s microscale are plotted in the two panels of Fig. 1 for
different values of the activation energy, with the non-reactive solution corresponding to Ribner’s7 analysis.
The LIA results are consistent with the non-linear analysis. Combustion increases the longitudinal variance
immediately after the shock, while the larger postshock Mach number supports a weaker acoustic decay
(in agreement with the results of Jackson et al.’s28). The longitudinal Taylor’s microscale is enhanced by
combustion, which selectively energize incoming wavelengths. An increase in activation energy augments the
Taylor’s microscale effect.

III.B. L∗ Effect on a Detonation Close to the Stability Limit

An analysis of the longitudinal velocity variance and microscale for the L∗ 6= 1 cases is presented in Fig. 2.
Close to the shock, the variance of the fluctuation is enhanced by an increase in L∗, while, far from the
front, its value is weakly affected. A similar observation holds for the microscale, for which a distinct peak
is noted near the half reaction distance (x = 1) for large L∗. The weak dependence of the farfield velocity
statistics on L∗ is not surprising considering the spectra previously shown.18 Given that the temperature
spectra show a more substantial L∗ effect, the thermal fluctuation variance is analyzed in the next set of
plots.

Experimental observations correlate the presence of hot-spots to non-ideal preshock conditions.2 The
temperature response to incompressible preshock turbulence is here analyzed based on the scaled variance
T 2/u2

0. Results are shown in Fig. 3 for different values of E and L∗. For the reactive cases, a global maximum

of T 2 is present within the reaction zone. This peak is pronounced and increases in magnitude with both
E and L∗, signaling the propensity for hot spot formation for higher activation energies and longitudinal
scale of turbulence. The relationship between temperature amplification and E is consistent with Austin’s22

experimental observations on hot spot formation. Note that Austin did not consider a turbulent inflow, and
the postshock fluctuations were result of intrinsic instability; yet the experiments link spikes in temperature
disturbances within the reaction zone to the activation energy.
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Figure 1. Longitudinal velocity variance and Taylor’s microscale for Q = 2, E = 5, 10, γ = 1.2, f = 1.2, and L∗ = 1
(M0 = 1.9439).
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Figure 2. Longitudinal velocity variance and Taylor’s microscale for Q = 2, E = 10, γ = 1.2, f = 1.2, and L∗ = 1, 5, 10
(M0 = 1.9439).
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Figure 3. Scaled temperature variance for Q = 2, E = 5, 10, γ = 1.2, f = 1.2, and L∗ = 1, 5, 10 (M0 = 1.9439).

IV. Non-Linear Analysis, Governing Equations

IV.A. Scales

The scales for the detonation–turbulence interaction problem are the root mean square of the longitudinal
velocity at the inflow urms,0, the inflow Taylor microscale λ0 based on the dissipation function, the preshock
unperturbed density ρ0, and the specific gas constant R. This choice of scales is maintained for zero in-
flow turbulence, the condition referred to as non-forced or natural detonation, by using the scales for the
corresponding forced case.

When performing linear analysis of detonation instability, the growth rate eigenvalue and associated
eigenfunctions are reported with a slightly different choice of scales. In such a case, the half detonation
distance L1/2 and the preshock pressure p0 are used in place of λ0 and urms,0. To avoid confusion, the
scaling will be explicitly mentioned in the linear growth analysis.

IV.B. Navier–Stokes Equations

The governing equations are the non-dimensional conservative form of the continuity, momentum and energy
equations in Cartesian coordinates. The working fluid is assumed to be a perfect gas.

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0 (18a)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj + pδij − σij) = 0, i = 1, 2, 3 (18b)

∂Et

∂t
+

∂

∂xj
(Etuj + ujp + qj − uiσij) = 0 (18c)

∂ρλ

∂t
+

∂(ρλuj + ρJj)

∂xj
= (ρ − ρλ)r(T ), (18d)

where the viscous stress tensor, heat flux vector, and the mass diffusion velocity are

σ =
µ

Re

(

∇~u + ∇~uT − 2

3
I3,3∇ · ~u

)

, (19a)

~q = − γ

γ − 1

µ

RePr
∇T, (19b)
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ρ ~J = − µ

RePrLe
∇λ (19c)

µ =

(

T

T0

)0.7

, (19d)

where I3,3 is the 3 × 3 identity matrix. The variable λ is the reaction progress, where λ = 0 describes the
unburnt state and λ = 1 the completely burnt state. The total energy of the fluid is given by

Et = ρ

(

P

γ − 1
+

u2
i

2
− Q̃λ

)

(20)

where Q̃ is the non-dimensional heat release so that the term Q̃ρλ denotes the non-dimensional chemical
energy released as heat during the burning process. The reaction rate r(T ) is described by a single step
mechanism, where the Arrhenius law depends on temperature T through the relation

r(T ) = K0 exp

(

− Ẽ

T

)

(21)

where K0 is the pre-exponential factor that sets the temporal scale of the reaction, Ẽ is the non-dimensional
activation energy.

V. Numerical Set-up

A sketch of the computational set-up for the study of turbulence detonation interaction is shown in Fig. 4.
The domain is three-dimensional with a square transverse section (x− z) and periodic boundary conditions
at the x− y and x− z planes. Non-reflective boundary conditions are implemented at the subsonic out-flow
boundary. The conditions at the supersonic inflow are detailed in §VI.A.

x

y

Shock Non−Reflective Boundary

x = 0

Figure 4. Sketch of the computational set-up.

VI. Test Cases

Consider a one–dimensional detonation structure with unit overdrive f = 1 and constant isentropic index
γ, there is a one-to-one relationship between inflow Mach number in shock reference frame M and heat
release parameter,

Q ≡ Q̃

p0/ρ0
=

Q̃

γM2
t

=
γ
(

M2 − 1
)

2

2 (γ2 − 1)M2
, (22)

with Mt the turbulent Mach number. Note that Q is purely a detonation parameter and is independent of
the inflow turbulence, while Q̃ is an interaction parameter and depends on the inflow turbulence through
Mt. Therefore, a one-dimensional detonation structure with unit overdrive can be identified by assigning
M , E ≡ Ẽ/ (p0/ρ0) and γ.

In all cases considered, the isentropic index is kept fixed and equal to γ = 1.2. Two free-stream Mach
number conditions are considered in the present research. The low heat release case features M = 4.0 and,
thus, Q = 19.18. The high heat release case has M = 5.5, which gives Q = 38.57.
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The activation energy E can be physically related to responsive changes in induction time with the
postshock temperature in von Neumann conditions, (∂ln τi/∂lnTps)f=1, where τi is the induction time and

Tps is the postshock temperature.30 The choice of activation energy in the present study has been primarily
dictated by selecting detonation structures that are longitudinally stable, i.e. , stable to one-dimensional
perturbations. Longitudinal instability gives rise to axial motion of the mean shock front and galloping
waves,20 which complicates the evaluation of the ensemble average as a time-space mean at a fixed normal-
to-the shock distance. The longitudinal instability boundary divides the E −Q quarter plane in two convex
regions. Such a boundary for γ = 1.2 and unit overdrive is shown in the bottom panel Fig. 5. Based on
this figure, the choices E = 12 and E = 20 are made for low (Q = 19.18) and high (Q = 38.57) heat release
cases, respectively. The high heat release conditions are similar to those used by Dou et al.21 who simulated
a detonation wave with Q = 50, E = 20, γ = 1.2 and f = 1.

Dissipation effects lead to the definition of the Reynolds number Reλ which will be set based on the
decay of homogeneous isotropic turbulence described in §VI.A, the Prandtl and Lewis numbers, which are
fixed to Pr = 0.72 and Le = 1. Compressibility effects in the incoming turbulent flow are set by assigning
the turbulent Mach number Mt ≡ urms/

√

γp0/ρ0, which leads to the determination of the mean preshock
pressure p0. The value of Mt is discussed in §VI.A. The final model parameter K0 is assigned by imposing
the half reaction distance L1/2 through the ratio L∗ = L1/2/λ0, where L∗ represents a ratio of detonation
to turbulent scales and is set equal to one in all test cases.

Note that the Reynolds number based on acoustic velocity and half reaction distance, ReL1/2
≡ √

p0ρ0L1/2/µ0 =

ReλL∗/
(√

γMt

)

, is quite small in the simulations presented. In fact, for L∗ = 1, typical values of Mt ≈ 0.2
and Reλ small enough to allow for a direct numerical simulation (DNS) of the problem, ReL1/2

≈ 200. An
increase in L∗ leads to a proportional increase in ReL1/2

, but also to a similar increase in domain size and
computational requirements. Therefore, for practical reasons, the DNS presented here refer to a very thin
detonation wave with, in practice, a sub-millimeter reaction distance. The influence of a small Reynolds
number on the growth rate of normal mode disturbances is analyzed in.29

Three simulations at low heat release are discussed, a reactive, a non-reactive and a non-forced one.
The non-reactive corresponds to shock–turbulence interaction conditions, with free-stream Mach number
M = 4.0. The non-forced conditions are obtained by zeroing out the incoming turbulence so that only
natural instability fluctuations are present in the postshock field. Similarly, three simulations at high heat
release are considered. In this case, two different kinds of inflow turbulence are analyzed together with
the non-forced detonation. The first forced inflow case has only vortical waves, obtained from the decay of
homogeneous turbulence described in §VI.A. In the second case, the vortical waves are nullified in favor of
entropy waves obtained using the Morkovin31 scaling: an empirical relationship between temperature and
longitudinal velocity perturbation valid in constant pressure boundary layers. Density fluctuations in the
constant pressure inflow are related to the isotropic turbulence velocity perturbation by

ρ′/ρ̄ = (γ − 1)M2 u′

ū
. (23)

Mahesh et al.32 used equation (23) to analyze the influence of entropy perturbation on the shock–turbulence
interaction, and discovered a strong influence of preshock density fluctuations on postshock perturbation
dynamics.

VI.A. Inflow Boundary Conditions and Temporal Decay

The inflow boundary conditions are implemented by imposing the fluid state on the supersonic inflow side.
The procedure is similar to that described by Mahesh et al.32 The flow is decomposed into a mean and
perturbation part. The perturbation is evaluated by temporal decay of homogeneous, isotropic, compressible
turbulence in a cube with periodic boundary conditions. The initial spectrum is Gaussian and symmetric
with kinetic energy density

E (k) =
16
√

2
π exp

(

− 2k2

k2

0

)

k4

k5
0

, (24)

with k0 = 3.
The spatial realization used to model the inflow boundary conditions corresponds to the t = 3 solution,

for which the inflow turbulent Mach number is Mt = 0.235. The time-decayed turbulence is rescaled so that
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Figure 5. Normal mode analysis of detonation instability. Top two panels: real and imaginary part of the eigenvalue.
Bottom panel, longitudinal instability boundary for γ = 1.2 and unit overdrive.

the length and velocity scales are the Taylor micro-scale λ and the velocity rms for the spatial realization
at t = 3. The detonation–turbulence interaction is carried out by advecting the random spatial realization,
thus assuming frozen dynamics. Lee et al.15 have shown that Taylor’s hypothesis is valid for a wide range of
compressible flows that includes the present conditions. The present Mt value is large compared to similar
studies, e.g. Lee et al.,9 because the stability of the limit cycles renders the contribution of small noise
marginal with respect to the natural fluctuations.

VII. Non-linear Analysis Results

VII.A. Energy Spectra

One-dimensional spectra for the longitudinal velocity Φu in the postshock field are determined as functions
of the temporal wave number kt by calculating the Fourier transform of space–time sequences u′ (t, y, z),
and summing the three dimensional spectral density function û (kt, ky, kz) ≡ F (u′ (t, y, z))F (u′ (t, y, z))

∗

over the spatial wave numbers ky and kz. These temporal spectra are identical to spatial averages over
planes perpendicular to the mean flow of the spectra of time sequences taken at fixed spatial locations. The
one-dimensional spectra are normalized so that the sum of their values at the discrete wave numbers at
which they are evaluated is equal to the variance of the fluctuation.

Energy spectra at four distances from the shock are shown in Fig. 6 for reactive and non-reactive con-

ditions, in the low heat release case. The thick dashed line has slope ∝ k
−5/3
t and, by assuming Tay-

lor’s hypothesis, indicates the inertial sub-range. The significant difference between shock–turbulence and
detonation–turbulence interaction is evident by comparing the two panels of Fig. 6. A pronounced peak
characterizes the response of a detonation to turbulence, and leads to the identification of a characteristic
frequency of maximal spectral density, in good agreement with linear analysis predictions.18 A comparison
between forced and non-forced spectra presented in the first row of Fig. 7 reveals that such a characteristic
frequency is associated with natural fluctuations. The figure shows that in the forced case the majority of the
fluctuation kinetic energy is associated with limit cycle oscillations. Nonetheless, the peaks of the spectrum
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are smoothed and decreased in magnitude by the addition of inflow turbulence.
A similar result is obtained by comparing forced and non-forced high heat release cases. The results

are shown in the second and third rows of Fig. 7 for vortical and entropy waves respectively. The peak
frequency is approximately constant when changing the distance from the shock and matches the frequency
of the most amplified linear wavelength as inferred from the top panels of Fig. 5. Due to the different non-
dimensionalization used in the growth rate eigenvalue computations, α values in Fig. 5 must be multiplied by
(

Mt
√

γ
)

−1
to compare with the turbulent computations. After conversion to the inflow fluctuation scales,

the most amplified linear frequencies are 5.6 and 6.98 for the low and high heat release cases, respectively.
The peak in response spectra are at kt = 5.2 and 6.91, for the analogous non-linear cases.

The two bottom rows of Fig. 7 also reveal that the entropy fluctuations are more effective in disrupting
the periodic limit cycle solutions supported by the intrinsic detonation instability. The difference between
forced and non-forced cases is much larger in the bottom row of Fig. 7 than in the middle one.
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Figure 6. One–dimensional energy spectra against temporal wave number. Comparison of reactive and non-reactive

cases with vortical inflow at M = 4. The thick dashed line is ∝ k
−5/3

t .
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Figure 7. One–dimensional energy spectra against temporal wave number: comparison of forced and non-forced cases.
Each column represents a distance from the shock as indicated in the column titles. Top row, low heat release, M = 4;
solid line non-forced and dashed line vortical forcing. Mid row, high heat release, M = 5.5; solid line non-forced and
dashed line vortical forcing. Bottom row, high heat release, M = 5.5; solid line non-forced and dashed line entropic

forcing. In all panels, the thick dashed lines are ∝ k
−5/3

t .

VII.B. Analysis of Variances and Auto-correlations

The forced and non-forced spectra presented in §VII.A reveal marked differences in the responses of reactive
and nonreactive configurations to a turbulent inflow. Such differences are investigated in more detail by
analyzing variances of the fluctuation where, as before, ensemble averages are computed as space–time
averages at constant distance from the shock. In general, the use of so-called Favre averages (see, for
example, Warsi33 p. 481), used for example by Lee,9 changes the results only marginally, therefore non-
weighted averages are used in all results presented in this work.

The meanflow structure is significantly affected by intrinsic and forced fluctuations. Figure 8 shows
the mean temperature and velocity for the five reactive cases along with the corresponding unperturbed
Zel’dovich-Neumann-Doering (ZND) profiles. For all cases, the jump across the shock is lower than that
predicted by the Rankine–Hugoniot conditions. This phenomenon is a consequence of both shock front
motion and corrugation, and is consistent with the mean shock profiles reported by Lele and Larson34 at
large Mt and in non-reactive conditions. The reaction length supported by turbulent inflow L1/2 is evaluated

based on the mean profile as the distance between the location at which λ = 1 × 10−3 and that at which
λ = 0.5. For the low heat release condition, the non-forced and vorticity forced cases have L1/2 equal to
1.840 and 1.542 respectively. For the high heat release condition, the non-forced, vorticity forced and entropy
forced cases have L1/2 equal to 1.963, 1.889 and 2.312 respectively. The intermittent corrugation of the front
expands the half reaction distance above the one-dimensional value of L1/2 = 1. Vorticity forcing ahead
of the wave tends to reduce the region of heat release, with a more pronounced effect in low heat release
conditions, while entropy forcing leads to an increase in L1/2.

Longitudinal and transverse velocity variances are shown for the six cases in Fig. 9. The top-row panels
refer to the low heat release case and the solid, dashed and dotted curves represent non-reactive, non-forced
and vortical inflow solutions respectively. The major difference between shock–turbulence and detonation–
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turbulence interaction is the loss of the longitudinal fluctuation peak immediately after the shock. Such a
local maximum is due to the decay of sub-critical acoustic waves (those which are damped in the postshock
far-field) followed by viscous dissipation, and is typical of non-reactive conditions as the linear interaction
analysis of Rawat and Zhong12 shows. Moreover, for the reactive cases, the presence of inflow vortical
fluctuations increases transverse fluctuations of up to 50% above the non-forced values, at selected locations.

Note in top-left panel of Fig. 9 that the non-reactive longitudinal correlation immediately after the shock
is larger than its preshock value. This behavior is in contrast with that reported in literature.9, 12 Further
analysis shows that this result is a consequence of the high turbulent Mach number, and is associated to the
large shock corrugation. In Fig. 10, such longitudinal variances are compared to a non-reactive Mt = 0.1
case. The comparison shows that the low Mt case behaves similarly to literature data.9, 12 Moreover, the
Mt = 0.235 variance presents a much higher peak immediately after the shock, and drops below the low Mt

case far from the front.
The two bottom panels of Fig. 9 refer to the high heat release case with solid, dashed and dotted

lines indicating non–forced, vortical and entropy wave solutions, respectively. Vortical fluctuations produce
a weaker increase in transverse variances in the high heat release case than in the low heat analog. It
is also evident that the limit cycles are less sensitive to vorticity forcing than to entropy forcing. The
inflow entropy fluctuation is more effective than the vortical analog in reducing the longitudinal velocity
fluctuations associated with the detonation instability. Contrary to vorticity forcing, the addition of entropy
forcing reduces postshock transverse fluctuations.

To provide a graphical analysis of the effects of turbulence on detonations, numerical schlieren snapshots
are shown in Figs. 11–13 for the three high heat release cases. All panels refer to an x − y slice at half
the box size, z = L/2. Each panel represents a different time as indicated in the titles. The time sequence
covers approximately the period of the most amplified linear mode Tα = 2π/6.98 ≈ 0.9, which was previously
shown to match the wave number of the maximum of the velocity spectra. The non-forced case shows a
time periodicity typical of limit cycle solutions. Both forced cases display a more complex time history. A
considerably more perturbed postshock field is noticed in the entropy forced case, where large pockets of
high density material detach from the shock front and are convected downstream. These regions correspond
with unburned material convected through the reaction region. Temperature fluctuations in the fire zone
are amplified by the perturbed inflow (a more detailed analysis is presented in §VII.C), but no evidence of
hot spots is found.

Auto-correlations in planes parallel to the unperturbed shock front are presented in terms of integral
length scales. The scales are evaluated by integrating the correlation coefficient built on space–time averages
against the separation distance. The autocorrelation coefficient is a scaled two–point correlation function,
so that the integral length associated to a general variable f takes the form,

Λf =

∫ L2

0 f (x, y, z, t)
′

f (x, y + h, z, t)
′

dh

σf
, (25)

where σ is the variance. Davidson35 explained that autocorrelation helps in differentiating between the
small and large scale eddies in turbulence, and is preferable to one–dimensional, scalar functions, such as
ux. It is conventional to evaluate the Fourier transform of the velocity correlation tensor Qij with diagonal
components Qii representing autocorrelation functions for the velocity components ui. Huang et al.36 argued
that the autocorrelation function is a good indicator of the inertial sub-range.

Temperature, longitudinal velocity, density and progress of reaction (ΛT , Λu, Λρ, and Λλ) scales are
plotted against the distance from the shock in the four panels of Figs. 14–15. The two figures show the
strong effect of natural detonation fluctuations in increasing the integral scales across the shocks. The
addition of inflow turbulence breaks natural scales and considerably reduces the integral scale. Entropy
inflow perturbations are found to be more effective than vorticity analogs in breaking regular structures.

Longitudinal velocity and transverse velocity Taylor microscales, λ1 and λ2 are plotted in Fig. 16 for the
two levels of heat release. The Taylor microscales are evaluated as

λ1 =

√

√

√

√

u′2

(

∂u′

∂x

)2
, λ2 =

√

√

√

√

√

v′2

(

∂v′

∂y

)2
. (26)

They are strongly affected by the reactivity of the mixture in the postshock field. The detonation–turbulence
interaction supports significantly higher values of the microscale than the nonreactive analog. Nevertheless,

14 of 27

American Institute of Aeronautics and Astronautics Paper AIAA-2010-0351



the distribution of the microscale in the postshock field is not significantly affected by an increase in heat
release. The addition of a turbulent inflow has also a marginal effect on the microscale. This conclusion
is in contrast with that drawn for the integral scale. The longitudinal microscale for the reactive cases is
significantly larger than the transverse one, showing the effect of combustion in energizing (accelerating)
longitudinal structures at selective wave numbers. The selectivity of the reactive interaction is in agreement
with the results of linear analysis,18 and the presence of local maxima in the post shock spectra shown in
§VII.A. Entropy fluctuations behaving according to Morkovin’s hypothesis are more effective in reducing
the microscale in the postshock field than the vortical analogs.
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Figure 8. Temperature and longitudinal velocity means for the five reactive cases. ZND profiles refer to the classical
one-dimensional, steady analysis of detonation waves.

15 of 27

American Institute of Aeronautics and Astronautics Paper AIAA-2010-0351



0 5 10 15
0

2

4

6

8

10
M = 4, Longitudinal

 

 

0 5 10 15
0

1

2

3

4

5

M=4, Transversal

 

 

Non reactive
Non−Forced
Vorticity

Non reactive
Non−Forced
Vorticity

0 5 10 15
0

2

4

6

8

10

X−X
s

M=5.5, Longitudinal

 

 

0 5 10 15
0

2

4

6

8

10

X−X
s

M=5.5, Transversal

 

 

Non−Forced
Vorticity
Entropy

Non−Forced
Vorticity
Entropy

Figure 9. Longitudinal and transverse velocity variances for different inflow forcing and Mach numbers.
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Figure 11. Numerical schlieren for the non-forced M = 5.5 case. Different panels refer to the same z = L/2 slice but
different times, as indicated on top of each panel. The time-interval 15.0− 15.9 corresponds with the period of the most
amplified normal mode Tα = 2π/6.98 ≈ 0.9.

VII.C. Probability Distribution Functions

A set of probability distribution functions (PDF) is evaluated in the post-shock region by determining
conditional probabilities for λ < 0.5 and p > pZND/2, where pZND is the maximum pressure for a steady
detonation wave. The conditional probability functions for longitudinal velocity and temperature are plotted
for all cases in Fig. 17. For both heat release cases, the response to vortical forcing leads to a larger
range of fluctuations. The changes in both u and T fluctuations are substantial in the near-shock region.
Entropy fluctuations support stronger changes than vortical fluctuations. The temperature PDF for the
entropy forcing case manifests a significant increase at large temperatures, which points to the possibility of
supporting hot spot formation at higher activation energies.

Changes in fluctuations caused by the turbulent inflow decrease downstream of the shock plane, as
demonstrated by longitudinal velocity PDFs evaluated at different downstream locations (x = constant)
shown in Figs. 18 and 19. The marked difference between reactive and non reactive longitudinal velocity
PDF shown in Fig. 18 is due to gas acceleration caused by the reactivity. The temperature PDF (not
shown) behaves similarly to the velocity counterpart: differences caused by the forcing quickly diminish as
the distance from the shock is increased, leading to a downstream PDF that is weakly dependent on the
inflow perturbation.

VIII. Conclusions and Future Work

The present research examines the interaction of turbulence with a detonation wave from both the linear
and non-linear standpoints. The focus is on changes with respect to the shock–turbulence analog as a
consequence of the reactivity. Nonlinear calculations are carried out to investigate modifications to the
limit-cycle natural fluctuations caused by strongly perturbed inflows. Linear interaction analysis is limited
to weakly stable (i.e. close to the stability boundary) conditions, and explains the role of system natural
frequencies on first order statistics.

The main conclusions of the present work are summarized below. For a turbulent Mach number Mt =
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Figure 12. Numerical schlieren for the vorticity perturbation M = 5.5 case. Different panels refer to the same z = L/2
slice but different times, as indicated on top of each panel.

Figure 13. Numerical schlieren for the entropy perturbation M = 5.5 case. Different panels refer to the same z = L/2
slice but different times, as indicated on top of each panel.
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Figure 14. Comparison of integral length scales for the low heat release case. The legend shown in the bottom-right
panel applies to all. In the bottom right panel, the non-reactive curve is not drawn because the progress of reaction is
not defined.
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Figure 16. Comparison of longitudinal and transverse velocity Taylor’s microscales for both heat release cases. The
legend shown in the left panel of each row applies also to the adjacent right panel.
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shown in the top-left panel applies to all four panels.

24 of 27

American Institute of Aeronautics and Astronautics Paper AIAA-2010-0351



0 5 10 15
0

0.1

0.2

0.3

M=5.5, X−X
s
 = 4

 

 

5 10 15
0

0.05

0.1

0.15

0.2

0.25

M=5.5, X−X
s
 = 6

5 10 15
0

0.05

0.1

0.15

0.2

M=5.5, X−X
s
 = 8

u/u
rms,0

6 8 10 12 14 16
0

0.1

0.2

0.3

M=5.5, X−X
s
 = 10

u/u
rms,0

Non−Forced
Vorticity
Entropy

Figure 19. High heat release longitudinal velocity PDF at constant x, for various distances from the shock. The legend
shown in the top-left panel applies to all four panels.
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0.235, postshock fluctuations in reactive conditions are dominated by wavelengths associated with the natural
fluctuations. The introduction of vortical and entropy perturbations reduces, but does not shift, peak
intensities in the one-dimensional kinetic energy spectra. Transverse velocity variances are considerably
augmented above the unforced value by both vortical and entropic fluctuations. The reactivity in the post-
shock region eliminates the peak in longitudinal variance due to the contribution of sub-critical acoustics to
velocity components. Both linear and nonlinear analysis agree in this respect.

Integral length scales are markedly increased by natural (limit cycle) oscillations above the nonreactive
values. Entropy fluctuations are more effective than vorticity analogs in reducing the integral scales. Taylor
microscales based on the velocity components are increased by reactivity, which considerably stretches small
structures in the longitudinal direction. Different from the integral length scale case, the addition of pre-
shock forcing weakly affects velocity microscales. Probability distribution functions for forced cases manifest
a flattened profile when compared to detonations propagating in unperturbed fields.

Both forcing conditions lead to an increased probability of high temperature fluid in the reaction zone.
Linear analysis shows the presence of a substantial peak of the temperature variance in the reaction region
for high activation energies. It is, therefore, the structure of the reactive region that leads to thermal
amplification, and possibly to the formation of hot spots. Entropy forcing leads to the formation of large
pockets of unburned material, detached from the shock. These effects are also present in vortical forcing
cases, but are of reduced magnitude.

Future work will focus on two aspects of detonation–turbulence interaction. First is the analysis of large
activation energies, beyond the longitudinal stability limit. Based on present results, large activation energies
are likely to support hot spot formation for strong inflow forcing. Second, large N and Re numbers will be
investigated using a large eddy simulation (LES) approach built upon the present DNS effort.
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